3.336 \(\int \sec (e+f x) (a+b \sin ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=121 \[ -\frac {b \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{2 f}+\frac {(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}-\frac {\sqrt {b} (3 a+2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{2 f} \]

[Out]

(a+b)^(3/2)*arctanh(sin(f*x+e)*(a+b)^(1/2)/(a+b*sin(f*x+e)^2)^(1/2))/f-1/2*(3*a+2*b)*arctanh(sin(f*x+e)*b^(1/2
)/(a+b*sin(f*x+e)^2)^(1/2))*b^(1/2)/f-1/2*b*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3190, 416, 523, 217, 206, 377} \[ -\frac {b \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{2 f}+\frac {(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}-\frac {\sqrt {b} (3 a+2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

-(Sqrt[b]*(3*a + 2*b)*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/(2*f) + ((a + b)^(3/2)*ArcTa
nh[(Sqrt[a + b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/f - (b*Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(2*
f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 3190

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \sec (e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (a+b x^2\right )^{3/2}}{1-x^2} \, dx,x,\sin (e+f x)\right )}{f}\\ &=-\frac {b \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{2 f}-\frac {\operatorname {Subst}\left (\int \frac {-a (2 a+b)-b (3 a+2 b) x^2}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{2 f}\\ &=-\frac {b \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{2 f}+\frac {(a+b)^2 \operatorname {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}-\frac {(b (3 a+2 b)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{2 f}\\ &=-\frac {b \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{2 f}+\frac {(a+b)^2 \operatorname {Subst}\left (\int \frac {1}{1-(a+b) x^2} \, dx,x,\frac {\sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}-\frac {(b (3 a+2 b)) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{2 f}\\ &=-\frac {\sqrt {b} (3 a+2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{2 f}+\frac {(a+b)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}-\frac {b \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.67, size = 233, normalized size = 1.93 \[ \frac {\sqrt {2} \left (4 a^2+5 a b+2 b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {2 a+2 b} \sin (e+f x)}{\sqrt {2 a-b \cos (2 (e+f x))+b}}\right )-2 \sqrt {b} \sqrt {a+b} \left (\sqrt {b} \sin (e+f x) \sqrt {2 a-b \cos (2 (e+f x))+b}+\sqrt {2} (3 a+2 b) \log \left (\sqrt {2 a-b \cos (2 (e+f x))+b}+\sqrt {2} \sqrt {b} \sin (e+f x)\right )\right )+\sqrt {2} b (3 a+2 b) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {a+b} \sin (e+f x)}{\sqrt {2 a-b \cos (2 (e+f x))+b}}\right )}{4 \sqrt {2} f \sqrt {a+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]*(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[2]*b*(3*a + 2*b)*ArcTanh[(Sqrt[2]*Sqrt[a + b]*Sin[e + f*x])/Sqrt[2*a + b - b*Cos[2*(e + f*x)]]] + Sqrt[2
]*(4*a^2 + 5*a*b + 2*b^2)*ArcTanh[(Sqrt[2*a + 2*b]*Sin[e + f*x])/Sqrt[2*a + b - b*Cos[2*(e + f*x)]]] - 2*Sqrt[
b]*Sqrt[a + b]*(Sqrt[2]*(3*a + 2*b)*Log[Sqrt[2*a + b - b*Cos[2*(e + f*x)]] + Sqrt[2]*Sqrt[b]*Sin[e + f*x]] + S
qrt[b]*Sqrt[2*a + b - b*Cos[2*(e + f*x)]]*Sin[e + f*x]))/(4*Sqrt[2]*Sqrt[a + b]*f)

________________________________________________________________________________________

fricas [B]  time = 0.95, size = 1381, normalized size = 11.41 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/16*((3*a + 2*b)*sqrt(b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^2*b^2 + 2
4*a*b^3 + 24*b^4)*cos(f*x + e)^4 + a^4 + 32*a^3*b + 160*a^2*b^2 + 256*a*b^3 + 128*b^4 - 32*(a^3*b + 10*a^2*b^2
 + 24*a*b^3 + 16*b^4)*cos(f*x + e)^2 + 8*(16*b^3*cos(f*x + e)^6 - 24*(a*b^2 + 2*b^3)*cos(f*x + e)^4 - a^3 - 10
*a^2*b - 24*a*b^2 - 16*b^3 + 2*(5*a^2*b + 24*a*b^2 + 24*b^3)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*s
qrt(b)*sin(f*x + e)) + 4*(a + b)^(3/2)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 8*(a^2 + 3*a*b + 2*b^2)*cos
(f*x + e)^2 - 4*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b)*sin(f*x + e
) + 8*a^2 + 16*a*b + 8*b^2)/cos(f*x + e)^4) - 8*sqrt(-b*cos(f*x + e)^2 + a + b)*b*sin(f*x + e))/f, -1/16*(8*(a
 + b)*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a -
 b)/(((a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f*x + e))) - (3*a + 2*b)*sqrt(b)*log(128*b^4*cos(f*x
 + e)^8 - 256*(a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^2*b^2 + 24*a*b^3 + 24*b^4)*cos(f*x + e)^4 + a^4 + 32*a^
3*b + 160*a^2*b^2 + 256*a*b^3 + 128*b^4 - 32*(a^3*b + 10*a^2*b^2 + 24*a*b^3 + 16*b^4)*cos(f*x + e)^2 + 8*(16*b
^3*cos(f*x + e)^6 - 24*(a*b^2 + 2*b^3)*cos(f*x + e)^4 - a^3 - 10*a^2*b - 24*a*b^2 - 16*b^3 + 2*(5*a^2*b + 24*a
*b^2 + 24*b^3)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(b)*sin(f*x + e)) + 8*sqrt(-b*cos(f*x + e)^
2 + a + b)*b*sin(f*x + e))/f, 1/8*((3*a + 2*b)*sqrt(-b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + 2*b^2)*cos
(f*x + e)^2 + a^2 + 8*a*b + 8*b^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-b)/((2*b^3*cos(f*x + e)^4 + a^2*b + 3
*a*b^2 + 2*b^3 - (3*a*b^2 + 4*b^3)*cos(f*x + e)^2)*sin(f*x + e))) + 2*(a + b)^(3/2)*log(((a^2 + 8*a*b + 8*b^2)
*cos(f*x + e)^4 - 8*(a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^2 - 4*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*co
s(f*x + e)^2 + a + b)*sqrt(a + b)*sin(f*x + e) + 8*a^2 + 16*a*b + 8*b^2)/cos(f*x + e)^4) - 4*sqrt(-b*cos(f*x +
 e)^2 + a + b)*b*sin(f*x + e))/f, -1/8*(4*(a + b)*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*
b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(((a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f*x + e)
)) - (3*a + 2*b)*sqrt(-b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + 2*b^2)*cos(f*x + e)^2 + a^2 + 8*a*b + 8*
b^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-b)/((2*b^3*cos(f*x + e)^4 + a^2*b + 3*a*b^2 + 2*b^3 - (3*a*b^2 + 4*
b^3)*cos(f*x + e)^2)*sin(f*x + e))) + 4*sqrt(-b*cos(f*x + e)^2 + a + b)*b*sin(f*x + e))/f]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sec \left (f x + e\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sin(f*x + e)^2 + a)^(3/2)*sec(f*x + e), x)

________________________________________________________________________________________

maple [B]  time = 3.71, size = 451, normalized size = 3.73 \[ -\frac {b^{\frac {3}{2}} \ln \left (\sin \left (f x +e \right ) \sqrt {b}+\sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\right )}{f}-\frac {b \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\, \sin \left (f x +e \right )}{2 f}-\frac {3 a \sqrt {b}\, \ln \left (\sin \left (f x +e \right ) \sqrt {b}+\sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\right )}{2 f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{2}}{2 \sqrt {a +b}\, f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a b}{\sqrt {a +b}\, f}+\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) b^{2}}{2 \sqrt {a +b}\, f}-\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a^{2}}{2 \sqrt {a +b}\, f}-\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a b}{\sqrt {a +b}\, f}-\frac {\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) b^{2}}{2 \sqrt {a +b}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x)

[Out]

-1/f*b^(3/2)*ln(sin(f*x+e)*b^(1/2)+(a+b-b*cos(f*x+e)^2)^(1/2))-1/2*b/f*(a+b-b*cos(f*x+e)^2)^(1/2)*sin(f*x+e)-3
/2/f*a*b^(1/2)*ln(sin(f*x+e)*b^(1/2)+(a+b-b*cos(f*x+e)^2)^(1/2))+1/2/(a+b)^(1/2)/f*ln(2/(sin(f*x+e)-1)*((a+b)^
(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^2+1/(a+b)^(1/2)/f*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*
cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a*b+1/2/(a+b)^(1/2)/f*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^
2)^(1/2)+b*sin(f*x+e)+a))*b^2-1/2/(a+b)^(1/2)/f*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*
sin(f*x+e)+a))*a^2-1/(a+b)^(1/2)/f*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a)
)*a*b-1/2/(a+b)^(1/2)/f*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*b^2

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 168, normalized size = 1.39 \[ -\frac {3 \, a \sqrt {b} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b}}\right ) + 2 \, b^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b}}\right ) - {\left (a + b\right )}^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}}\right ) - {\left (a + b\right )}^{\frac {3}{2}} \operatorname {arsinh}\left (-\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}}\right ) + \sqrt {b \sin \left (f x + e\right )^{2} + a} b \sin \left (f x + e\right )}{2 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

-1/2*(3*a*sqrt(b)*arcsinh(b*sin(f*x + e)/sqrt(a*b)) + 2*b^(3/2)*arcsinh(b*sin(f*x + e)/sqrt(a*b)) - (a + b)^(3
/2)*arcsinh(b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) + 1)) - a/(sqrt(a*b)*(sin(f*x + e) + 1))) - (a + b)^(3/2)*
arcsinh(-b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) - 1)) - a/(sqrt(a*b)*(sin(f*x + e) - 1))) + sqrt(b*sin(f*x +
e)^2 + a)*b*sin(f*x + e))/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}}{\cos \left (e+f\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(e + f*x)^2)^(3/2)/cos(e + f*x),x)

[Out]

int((a + b*sin(e + f*x)^2)^(3/2)/cos(e + f*x), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________